Efficient multi-swarm PSO algorithms for dynamic environments
نویسندگان
چکیده
Particle swarm optimization has been successfully applied in many research and application areas because of its effectiveness and easy implementation. In this work we extend one of its variants to address multi-modal dynamic optimization problems, the multi-swarm PSO (mPSO) proposed by Blackwell and Branke. The aim of our proposal is to increase the efficiency of this algorithm. To this end, we propose techniques operating at swarm level: one of which divides each swarm into two groups depending on the quality of the particles for facing the loss of diversity, and the other control the number of active swarms during the run using a fuzzy rule. A detailed experimental analysis shows the robustness of our proposal.
منابع مشابه
Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملMulti-swarm Optimization in Dynamic Environments
Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. In this paper, we present new variants of Particle Swarm Optimization (PSO) specifically designed to work well in dynamic environments. The main idea is to extend the single population PSO and Charged Particle Swarm Optimization (CPSO) methods by constructi...
متن کاملAn Energy Efficient Control Strategy for Induction Machines Based on Advanced Particle Swarm Optimisation Algorithms
This paper proposes an energy efficient control strategy for an induction machine (IM) based on two advanced particle swarm optimisation (PSO) algorithms. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (Dynamic PSO) and the chaos particle swarm optimisation (Chaos PSO) algorithms modify the algorithm parameters to improve the performance of the standard PSO algori...
متن کاملDynamic Multi-swarm Particle Swarm Optimization with Fractional Global Best Formation
Particle swarm optimization (PSO) has been initially proposed as an optimization technique for static environments; however, many real problems are dynamic, meaning that the environment and the characteristics of the global optimum can change over time. Thanks to its stochastic and population based nature, PSO can avoid being trapped in local optima and find the global optimum. However, this is...
متن کاملMultiple Route Generation Using Simulated Niche Based Particle Swarm Optimization
This research presents an optimization technique for multiple routes generation using simulated niche based particle swarm optimization for dynamic online route planning, optimization of the routes and proved to be an effective technique. It effectively deals with route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated niche based particle swarm opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Memetic Computing
دوره 3 شماره
صفحات -
تاریخ انتشار 2011